Введение в анализ, синтез и моделирование систем



              

Функционирование и развитие системы - часть 5


Под траекторией системы понимается последовательность принимаемых при функционировании системы состояний, которые рассматриваются как некоторые точки во множестве состояний системы. Для физических, биологических и других систем - это фазовое пространство.

Для формализации фактов в системном анализе (как и в математике, информатике и других науках) используется понятия "отношение" и "алгебраическая структура".

Отношение r, определенное над элементами заданного множества Х, - это некоторое правило, по которому каждый элемент х

Х связывается с другим элементом (или другими элементами) у
Х. Отношение r называется n-рным отношением, если оно связывает n различных элементов X. Множество пар (х,у), которые находятся в бинарном (2-рном) отношении друг к другу, - подмножество декартового множества X?Y. Отношение r элементов х
Х, y
Y обозначают как
, r(x,y) или r(X,Y).

Пример. Рассмотрим классическую схему ЭВМ из устройств: 1 - ввода, 2 - логико-арифметическое, 3 - управления, 4 - запоминающее, 5 - вывода. Отношение "информационный обмен" определим так: устройство i находится в отношении r с устройством j, если из устройства i в устройство j поступает информация. Тогда можно это отношение определить матрицей R отношений (наличие r на пересечении строки i и столбца j свидетельствует о том, что устройство i находится в этом отношении с устройством j, а наличие

- об отсутствии между ними этого отношения):


R = r r
r r
r r
r
 
r
 

Отношение, задаваемое фразой "для каждого х

Х" обозначается
x
X и называется квантором общности, а отношение "существует х
Х" имеет обозначение
х
Х и называется квантором существования. Факт того, что элементы х
Х связаны, выделены некоторым отношением r, обозначают как Х={х: r} или Х={х|r}.

Композиция (произведение) r=r1o r2. отношений r1 и r2, заданных над одним и тем же множеством Х, - это третье отношение r, определяемое правилом:


Отношение r называется отношением 1) тождества; 2) рефлексивным; 3) mpанзитивным; 4) симметричным; 5) обратным к отношению s, если, выполнены, соответственно, условия




Содержание  Назад  Вперед