Введение в анализ, синтез и моделирование систем



              

Функционирование и развитие системы - часть 9


отношения r1=r1(x1, x2,..., xk), связывающего элементы x1, x2, ..., xk
X (это могут быть и не первые k элементов), - это отношение r2 размерности m<k, т.е. оно использует некоторые из аргументов (параметров) исходного отношения;
  • разность двух отношений r1(x1, x2, ..., xk), r2(x1, x2, ..., xk) - это отношение r3=r1 - r2, состоящее из всех тех элементов X, для которых справедливо отношение r1, но не справедливо отношение r2;
  • декартово произведение двух отношений r2(x1, x2,..., xk) и r1(xn+1, xn+2,..., xn+m) - отношение r3=r1?r2, составленное всевозможными комбинациями всех элементов X, для которых справедливы отношения r1, r2; первые n компонентов отношения r3 образуют элементы, для которых справедливо отношение r1, а для последних m элементов справедливо отношение r2;
  • селекция (отбор, выборка) по критерию q компонентов, принадлежащих отношению r; критерий q - некоторый предикат.
  • Алгебры отношений часто называют реляционными алгебрами.

    В связи с употреблением интуитивно известного понятия "алгебра" уточним эту структуру, так она часто используется как основной аппарат наиболее формализованного описания систем. Алгебра - наиболее адекватный математический аппарат описания действий с буквами, поэтому алгебраические методы наилучшим образом подходят для описания и формализации различных информационных систем.

    Алгеброй A=<X, f> называется некоторая совокупность определенных элементов X, с заданными над ними определенными операциями f (часто определяемые по сходству с операциями сложения и умножения чисел), которые удовлетворяют определенным свойствам - аксиомам алгебры.

    Операция f называется n-местной, если она связывает n операндов (объектов - участников этой операции).

    Совокупность F={f} операций алгебры A называется ее сигнатурой, а совокупность элементов X={x} - носителем алгебры.

    Алгеброй Буля называется алгебра с введенными в ней двумя двухместными операциями, которые поименованы, по аналогии с арифметикой чисел, сложением и умножением, и одной одноместной операцией, называемой штрих-операцией или инверсией, причем эти операции удовлетворяют аксиомам (законам) алгебры Буля:




    Содержание  Назад  Вперед