В профессиональные версии MathCAD включен ряд дополнительных матричных функций Они перечислены ниже.
eigenvals(M) — возвращает вектор, содержащий собственные значения матрицы М,
eigenvec(M,Z) для указанной матрицы М и заданного собственного значения Z возвращает принадлежащий этому собственному значению вектор,
eigenvecs(M) — возвращает матрицу, столбцами которой являются собственные векторы матрицы М (порядок расположения собственных векторов соответствует порядку собственных значений, возвращаемых функцией eigenvals),
genvals(M,N) — возвращает вектор обобщенных собственных значений v1 соответствующий решению уравнения M-x=v,-N-x (матрицы М и N должны быть вещественными),
genvals(M,N) — возвращает матрицу, столбцы которой содержат нормированные обобщенные собственные векторы,
Ф1и(М) — выполняет треугольное разложение матрицы М- P-M=L-U, L и U — соответственно нижняя и верхняя треугольные матрицы Все четыре матрицы квадратные, одного порядка;
Фqr(A) — дает разложение матрицы A, A=Q-R, где Q, — ортогональная матрица и R — верхняя треугольная матрица,
(Bsvd(A) — дает сингулярное разложение матрицы А размером n m A*S*VТ где U и V — ортогональные матрицы размером m m и n n соответственно, S - диагональная матрица, на диагонали которой расположены сингулярные числа матрицы А,
Фsvds(A) — возвращает вектор, содержащий сингулярные числа матрицы А размером т-п, где т>п;
Egeninv(A) - возвращает матрицу левую обратную к матрице А.
L-A=E, где Е — единичная матрица размером п* п, L — прямоугольная матрица размером n-rn, A — прямоугольная матрица размером п*п.