Математический редактор MathCAD



  

12.1.3. Решение двухточечных краевых задач

Решение краевых задач для систем ОДУ методом стрельбы в Mathcad достигается применением двух встроенных функций. Первая предназначена для двухточечных задач с краевыми условиями, заданными на концах интервала.

  • sbval(z,x0,x1,D, load, score) — поиск вектора недостающих L начальных условий для двухточечной краевой задачи для системы N ОДУ;
    • z — вектор размера LXI, присваивающий недостающим начальным условиям (на левой границе интервала) начальные значения;
    • х0 — левая граница расчетного интервала;
    • x1 — правая граница расчетного интервала;
    • load(x0,z) — векторная функция размера NXI левых граничных условий, причем недостающие начальные условия именуются соответствующими компонентами векторного аргумента z;
    • score (x1, у) — векторная функция размера LXI, выражающая L правых граничных условий для векторной функции у в точке xi;
    • D(x,y) — векторная функция, описывающая систему N ОДУ, размера NXI и двух аргументов — скалярного х и векторного у. При этом у — это неизвестная векторная функция аргумента х того же размера NXI.

Решение краевых задач в Mathcad, в отличие от большинства остальных операций, реализовано не совсем очевидным образом. В частности, помните, что число элементов векторов D и load равно количеству уравнений N, а векторов z, score и результата действия функции sbval — количеству правых граничных условий L. Соответственно, левых граничных условий в задаче должно быть(N - L).

Как видно, функция sbval предназначена не для поиска собственно решения, т. е. неизвестных функций yi(x), а для определения недостающих начальных условий в первой точке интервала, т. е. yi(x). Чтобы вычислить yi(x) на всем интервале, требуется дополнительно решить задачу Коши.

Разберем особенности использования функции sbval на конкретном примере (листинг 12.2), описанном выше (см. разд. 12.1.1). Краевая задача состоит из системы двух уравнений (N=2), одного левого (L=1) и одного правого (N-L=2-1=1) граничного условия.

Листинг 12.2. Решение краевой задачи

Первые три строки листинга задают необходимые параметры задачи и саму систему ОДУ. В четвертой строке определяется вектор г. Поскольку правое граничное условие всего одно, то недостающее начальное условие тоже одно, соответственно, и вектор z имеет только один элемент z0. Ему необходимо присвоить начальное значение (мы приняли z0=io, как в листинге 12.1), чтобы запустить алгоритм стрельбы (см. разд 12.1.2).

Начальное значение фактически является параметром численного метода и поэтому может сильно повлиять на решение краевой задачи.

В следующей строке листинга векторной функции ioad(x,z) присваиваются левые граничные условия. Эта функция аналогична векторной переменной, определяющей начальные условия для встроенных функций, решающих задачи Коши. Отличие заключается в записи недостающих условий. Вместо конкретных чисел на соответствующих местах пишутся имена искомых элементов вектора z. В нашем случае вместо второго начального условия стоит аргумент z0 функции load. Первый аргумент функции load — это точка, в которой ставится левое граничное условие. Ее конкретное значение определяется непосредственно в списке аргументов функции sbval.

Следующая строка листинга определяет правое граничное условие, для введения которого используется функция score(х,у). Оно записывается точно так же, как система уравнений в функции D. Аргумент х функции score аналогичен функции load и нужен для тех случаев, когда граничное условие явно зависит от координаты х. Вектор score должен состоять из такого же числа элементов, что и вектор z.

Реализованный в функции sbval алгоритм стрельбы ищет недостающие начальные условия таким образом, чтобы решение полученной задачи Коши делало функцию score (х, у) как можно ближе к нулю. Как видно из листинга, результат применения sbval для интервала (0,1) присваивается векторной переменной и. Этот вектор похож на вектор z, только в нем содержатся искомые начальные условия вместо приближенных начальных значений, заданных в z. Вектор и содержит, как и z, всего один элемент I10. С его помощью можно определить решение краевой задачи у(х) (последняя строка листинга). Тем самым, функция sbval сводит решение краевых задач к задачам Коши. График решения краевой задачи показан на рис. 12.3.

Рис. 12.3. Решение краевой задачи для R=1 (листинг 12.2)

Рис. 12.4. Решение краевой задачи для R=0

На рис. 12.4 показано решение той же самой краевой задачи, но с другим правым граничным условием, соответствующим R=0, т. е. без зеркала на правой границе. В этом случае слабый обратный пучок света образуется исключительно за счет обратного рассеяния излучения от лазера. Конечно, многие из читателей уже обратили внимание, что реальная физическая среда не может создавать такого большого рассеяния назад. Иными словами, более реальны значения r(х)<<а(х). Однако, когда коэффициенты в системе ОДУ при разных ух очень сильно (на порядки) различаются, система ОДУ становится жесткой, и функция sbval не может найти решения, выдавая вместо него сообщение об ошибке("Соuld not find a solution").

Метод стрельбы не годится для решения жестких краевых задач. Поэтому алгоритмы решения жестких ОДУ в Mathcad приходится программировать самому (см. разд. 12.3).

  
Назад Начало Вперед