Математические задачи в пакете MathCAD 12

Казино slot v, slot v casino детальный обзор.


Оптимизация



В этой главе рассматриваются задачи на поиск экстремума функций и близкие к ним задачи приближенного решения алгебраических нелинейных уравнений и систем. Задачи поиска экстремума функции означают нахождение ее максимума (наибольшего значения) или минимума (наименьшего значения) в некоторой области определения ее аргументов. С вычислительной точки зрения две задачи являются практически одинаковыми, т. к., например, задача поиска максимума f (х) тождественна проблеме отыскания минимума -f(x). Поэтому ниже будем часто называть задачу поиска экстремума функции задачей минимизации.



Рис. 6.1. К пояснению задач поиска локального и глобального экстремума


Общая проблема поиска экстремума функции включает в себя задачи нахождения локального и глобального минимума. Последние называют еще задачами оптимизации, и решить их, как правило, намного труднее, поскольку они подразумевают локализацию всех минимумов f (х) и выбор из них наименьшего. (На рис. 6.1 показаны два локальных минимума функции, из которых левый является глобальным.) Ограничения значений аргументов, задающих область определения f (х), как и прочие дополнительные условия, могут быть определены в виде системы неравенств и (или) уравнений. В таком случае говорят о задаче на условный экстремум.

Численные методы, применяемые для минимизации, сходны с методами решения нелинейных уравнений, и поэтому материал этой главы близок по содержанию к предыдущей.

ПРИМЕЧАНИЕ

Решение задач минимизации в Mathcad реализовано только при помощи численного алгоритма. Таким образом, непосредственное символьное нахождение минимума невозможно. Однако аналитический поиск экстремума функции несложно запрограммировать, опираясь на соответствующие сведения математического анализа (см. разд. 6.1.5).


Книжный магазин