Решение жестких систем дифференциальных уравнений можно осуществить только с помощью встроенных функций, аналогичных по действию семейству рассмотренных выше функций для обычных ОДУ:
- у0 — вектор начальных значений в точке to;
- t0,t1 — начальная и конечная точки расчета;
- M — число шагов численного метода;
- F — векторная функция F(t, у) размера 1xN, задающая систему ОДУ;
- J — матричная функция j(t,y) размера (N+1)xN, составленная из вектора производных функции F(t,y) no t (правый столбец) и ее якобиана (N левых столбцов).
ПРИМЕЧАНИЕ
Встроенная функция Radau, которая не требует явного задания якобиана системы уравнений, появилась в версии Mathcad 2001I, а остальные две — в Mathcad 2001.
Решение жесткой задачи из предыдущего раздела при помощи функции Radau приведено в листинге 9.9. Результат показан в виде графика на рис. 9.14 вместе с графиком решения менее жесткой задачи (для которого применялся листинг 9.8). Как вы видите, хватило всего пяти точек разбиения интервала интегрирования жесткого ОДУ, чтобы метод с ним справился. Специфика применения других встроенных функций, требующих дополнительного задания якобиана, будет рассмотрена в следующем разделе на примере уравнения химической кинетики.
Листинг 9.9. Решение жесткого ОДУ алгоритмом RADAUS
Рис. 9.14. Решение жесткого ОДУ методом RADAUS (продолжение листингов 9.8 и 9.9)
В заключение приведем соответствующие встроенные функции, которые применяются для решения жестких систем ОДУ не на всем интервале, а только в одной заданной точке
t1.
Имена этих функций пишутся со строчной буквы, а их действие и набор параметров полностью аналогичны рассмотренным нами ранее для функций, относящихся к решению в заданной точке нежестких систем (см. разд. 9.3.2). Отличие заключается в специфике применяемого алгоритма и необходимости задания матричной функции якобиана
J(t,y) (для двух последних функций).