В предыдущих разделах было использовано в качестве примера в основном линейное уравнение осциллятора (оно содержало только первую степень неизвестных функций и их производных). Между тем многие нелинейные уравнения демонстрируют совершенно удивительные свойства, причем решение большинства из них можно получить лишь численно.
Рассмотрим несколько наиболее известных классических примеров динамических систем, имея в виду, что читателю они могут пригодиться как в познавательных, так и в практических целях. Это модели динамики популяций (Вольтерры), генератора автоколебаний (Ван дер Поля), турбулентной конвекции (Лоренца) и химической реакции с диффузией (Пригожина).
Как уже было сказано, для изучения динамических систем разработана специальная
теория, центральным моментом которой является анализ фазовых портретов, т. е.
решений, получающихся при выборе всевозможных начальных условий.
ПРИМЕЧАНИЕ
В большинстве примеров, изложенных ниже, для построения схемы фазового портрета рассчитывается несколько решений для разных начальных условий. О, том, как проделать такие расчеты в Mathcad, будет рассказано ниже на примере модели брюсселятора (см. разд. 9.5.4).
Ограничимся в дальнейшем минимальными комментариями и приведем листинги и графики решений без подробного обсуждения.