Математические задачи в пакете MathCAD 12

         

Глава 13.1.6. Многомерная интерполяция



Двумерная сплайн-интерполяция приводит к построению поверхности z (х,у), проходящей через массив точек, описывающий сетку на координатной плоскости (х,у). Поверхность создается участками двумерных кубических сплайнов, являющихся функциями (х,у) и имеющих непрерывные первые и вторые производные по обеим координатам.

Многомерная интерполяция строится с помощью тех же встроенных функций, что и одномерная (см. разд. 13.1.2), но имеет в качестве аргументов не векторы, а соответствующие матрицы. Существует одно важное ограничение, связанное с возможностью интерполяции только квадратных NxN массивов данных:

  •  interp(s,x,z,v) — скалярная функция, аппроксимирующая данные выборки двумерного поля по координатам х и у кубическими сплайнами:

  •  s — вектор вторых производных, созданный одной из сопутствующих функций cspline, pspline или lspline;
  •  х — матрица размерности Nх2, определяющая диагональ сетки значений аргумента (элементы обоих столбцов соответствуют меткам х и у и расположены в порядке возрастания);
  •  z — матрица действительных данных размерности NxN;
  •  v — вектор из двух элементов, содержащий значения аргументов х и у, для которых вычисляется интерполяция.


ПРИМЕЧАНИЕ

Вспомогательные функции построения вторых производных имеют те же матричные аргументы, что и interp: lspline (X, Y), pspline (X, Y), cspline (X, Y).



Пример исходных данных приведен на рис. 13.12 в виде графика линий уровня, программная реализация двумерной интерполяции показана в листинге 13.6, а ее результат — на рис. 13.13.

Листинг 13.6. Двумерная интерполяция
Содержание главы 13.1.6. Многомерная интерполяция

Содержание главы 13.1.6. Многомерная интерполяция

Рис. 13.12. Исходное двумерное поле данных (продолжение листинга 13.6)

Содержание главы 13.1.6. Многомерная интерполяция

Рис. 13.13. Результат двумерной интерполяции (продолжение листинга 13.6)


Содержание раздела